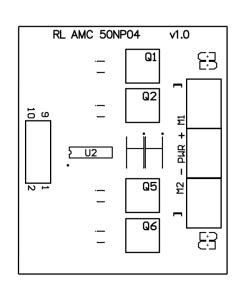
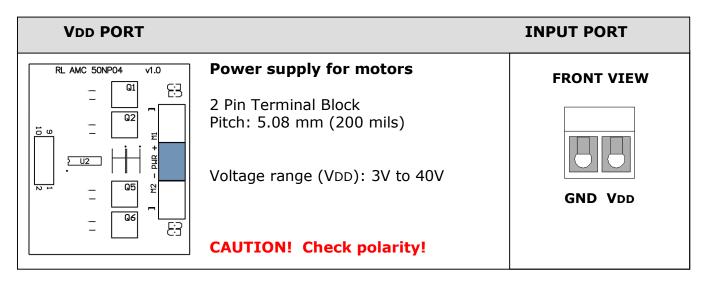

RL AMC 50NP04

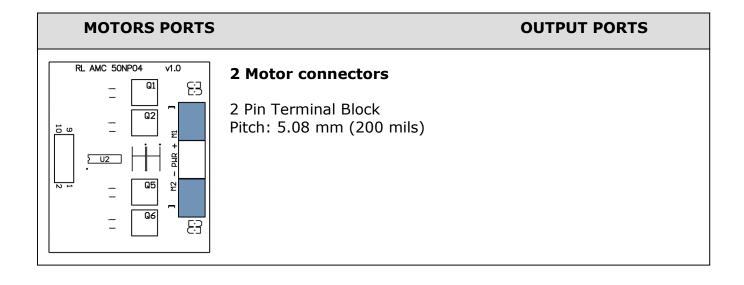

QUICK REFERENCE GUIDE

RL-AMC-50NP04 is an advanced Full H-Bridge board based on high performance MOSFETs capable of driving two high power DC motors.

MAIN FEATURES

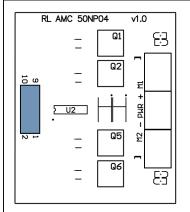
- 2 high power DC Motors control.
- PWM frequencies up to 20 KHz for speed control.
- Bi-directional control.
- Braking function (coast and brake functions).
- 3.3V / 5V logic capable.
- Up to 8A continuous operation with very low internal resistance (0.038 ohms).
- Up to 35A pulsed current.
- Wide range of power supply voltage ranging from 3V to 40V.
- Current sense (just 6mV per amp to minimize the total voltage drop when high currents are demanded).
- Just 3 pins needed from your microcontroller to drive each motor.
- Two LEDs per leg indicating the rotating direction of each motor.
- Easy interface connections through an standard 10-pin male header.
- Three two-pin terminal blocks for connecting the motors and their power supply.
- Logic power supply ranging from 2V to 6V.
- Size: 50 x 42 mm (1,97 x 1,65 inch) .




RL AMC 50NPO4

QUICK REFERENCE GUIDE

PORTS DESCRIPTION


RL AMC 50NPO4

QUICK REFERENCE GUIDE

CONTROL PORT

INPUT PORT

3.3V / 5V logic signals

2x5 header connector Picth: 2.54 mm (100 mils)

Voltage range (Vcc): 0.5V to 7V

TOP VIEW

М2	1

M1_1

M2_2

M1_2

M2_3

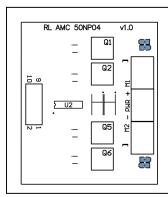
M1_3

GND

3

Current Sense

Vcc


Motor 1 usage:

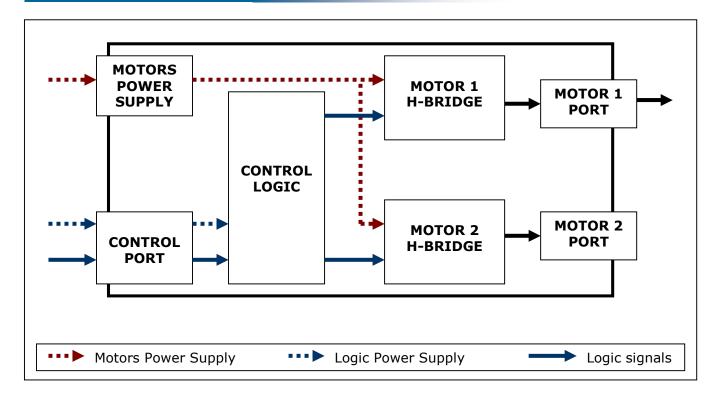
M1_1	M1_2	M1_3	Action
1	0	PWM	Forward
0	1	PWM	Reverse
1	1	1	Brake

Motor 2 usage:

M2_1	M2_2	M2_3	Action
1	0	PWM	Forward
0	1	PWM	Reverse
1	1	1	Brake

BOARD LEDS

Motor 1 direction leds


Motor 2 direction leds

RL AMC 50NPO4

QUICK REFERENCE GUIDE

BLOCK DIAGRAM

AUTHORS

Daniel Álvarez Sánchez Alberto Calvo Torrijos dani001@gmail.com albertoct@gmail.com